Add filter creation in configuration creation command.
This commit is contained in:
parent
eaa82edc81
commit
79e7714395
5
.gitignore
vendored
5
.gitignore
vendored
@ -157,4 +157,7 @@ cython_debug/
|
|||||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||||
#.idea/
|
.idea/
|
||||||
|
|
||||||
|
# Project Specific
|
||||||
|
scripts/
|
@ -1,4 +1,5 @@
|
|||||||
click
|
click
|
||||||
genanki
|
genanki
|
||||||
pandas
|
pandas
|
||||||
pyyaml
|
pyyaml
|
||||||
|
bullet
|
3
setup.py
3
setup.py
@ -8,7 +8,7 @@ def readme():
|
|||||||
|
|
||||||
setup(
|
setup(
|
||||||
name='ankimaker',
|
name='ankimaker',
|
||||||
version='0.0.4',
|
version='0.0.5',
|
||||||
description='Makes anki with files',
|
description='Makes anki with files',
|
||||||
url="https://git.lgoon.xyz/gabriel/ankimaker",
|
url="https://git.lgoon.xyz/gabriel/ankimaker",
|
||||||
license="BSD-3-Clause",
|
license="BSD-3-Clause",
|
||||||
@ -27,6 +27,7 @@ setup(
|
|||||||
"genanki",
|
"genanki",
|
||||||
"pandas",
|
"pandas",
|
||||||
"pyyaml",
|
"pyyaml",
|
||||||
|
"bullet"
|
||||||
],
|
],
|
||||||
long_description_content_type='text/markdown',
|
long_description_content_type='text/markdown',
|
||||||
)
|
)
|
||||||
|
@ -14,12 +14,15 @@ class AnkimakerConfig(yaml.YAMLObject):
|
|||||||
separators = ','
|
separators = ','
|
||||||
filters: List[List[FilterConfig]] = list()
|
filters: List[List[FilterConfig]] = list()
|
||||||
|
|
||||||
def __init__(self, header=None, answer_column=None, question_column=None, filters=tuple()):
|
def __init__(
|
||||||
AnkimakerConfig.answer_column = answer_column
|
self, separators=',', header=None, answer_column=None, question_column=None,
|
||||||
AnkimakerConfig.question_column = question_column
|
filters=tuple(), *args, **karhs
|
||||||
AnkimakerConfig.header = header
|
):
|
||||||
AnkimakerConfig.AnkimakerConfig = AnkimakerConfig
|
self.answer_column = answer_column
|
||||||
AnkimakerConfig.filters = list(map(lambda x: FilterConfig, filters))
|
self.question_column = question_column
|
||||||
|
self.header = header
|
||||||
|
self.separators = separators
|
||||||
|
self.filters = _conditionally_create_new_filters(filters)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def loader(configuration_content):
|
def loader(configuration_content):
|
||||||
@ -31,8 +34,19 @@ class AnkimakerConfig(yaml.YAMLObject):
|
|||||||
AnkimakerConfig.question_column = content.question_column
|
AnkimakerConfig.question_column = content.question_column
|
||||||
AnkimakerConfig.answer_column = content.answer_column
|
AnkimakerConfig.answer_column = content.answer_column
|
||||||
AnkimakerConfig.separators = content.separators
|
AnkimakerConfig.separators = content.separators
|
||||||
AnkimakerConfig.filters = [
|
AnkimakerConfig.filters = _conditionally_create_new_filters(content.filters)
|
||||||
[FilterConfig(**x) for x in or_filter]
|
|
||||||
for or_filter in content.filters
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
|
def _conditionally_create_new_filters(filters):
|
||||||
|
conf_has_filters = len(filters) > 0
|
||||||
|
if conf_has_filters:
|
||||||
|
should_cast_filter = not isinstance(filters[0][0], FilterConfig)
|
||||||
|
if should_cast_filter:
|
||||||
|
new_filters = [
|
||||||
|
[FilterConfig(**x) for x in or_filter]
|
||||||
|
for or_filter in filters
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
new_filters = filters
|
||||||
|
return new_filters
|
||||||
|
return list()
|
||||||
|
@ -1,7 +1,10 @@
|
|||||||
|
import yaml
|
||||||
|
|
||||||
from typing import List, Union
|
from typing import List, Union
|
||||||
|
|
||||||
|
|
||||||
class FilterConfig:
|
class FilterConfig(yaml.YAMLObject):
|
||||||
|
yaml_tag = '!fitlerconfig'
|
||||||
column: Union[str, int]
|
column: Union[str, int]
|
||||||
values: Union[List[Union[int, str]], Union[int, str]]
|
values: Union[List[Union[int, str]], Union[int, str]]
|
||||||
|
|
||||||
@ -10,7 +13,7 @@ class FilterConfig:
|
|||||||
self.values = values
|
self.values = values
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
return f'<ankimaker.config.filters.FilterConfig {self.column}: {self.values} >'
|
return f'<F({self.column}:{self.values})>'
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return self.__str__()
|
return self.__str__()
|
||||||
|
@ -1,10 +1,12 @@
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
import yaml
|
import yaml
|
||||||
import click
|
import click
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from typing import Type
|
from typing import Type, List
|
||||||
|
from bullet import Bullet, Input, YesNo
|
||||||
|
|
||||||
from ankimaker.config import Config
|
from ankimaker.config import Config, FilterConfig
|
||||||
|
|
||||||
|
|
||||||
__CONFIRMATION_QUESTION = """
|
__CONFIRMATION_QUESTION = """
|
||||||
@ -25,25 +27,93 @@ __COMMAND_SAMPLE = """ankimaker csv \
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
__ADD_FILTER_QUESTION = """Do you want do add a filter to the configuration?"""
|
||||||
|
|
||||||
|
|
||||||
def create_config(input_file, output_path):
|
def create_config(input_file, output_path):
|
||||||
new_config = Config()
|
|
||||||
|
|
||||||
new_config.separators = handle_read_option(
|
separators = handle_read_option(
|
||||||
input_file, read_option='sep', sep=new_config.separators
|
input_file, read_option='sep', sep=','
|
||||||
)
|
)
|
||||||
new_config.header = handle_read_option(
|
header = handle_read_option(
|
||||||
input_file, read_option='header', header=new_config.header,
|
input_file, read_option='header', header=None,
|
||||||
sep=new_config.separators, option_type=int
|
sep=separators, option_type=int
|
||||||
)
|
)
|
||||||
|
|
||||||
new_config.question_column = get_column('question')
|
question_column = get_column('question')
|
||||||
new_config.answer_column = get_column('answer')
|
answer_column = get_column('answer')
|
||||||
|
|
||||||
|
filters = process_filters(input_file, header, separators)
|
||||||
|
|
||||||
|
new_config = Config(
|
||||||
|
separators=separators,
|
||||||
|
header=header,
|
||||||
|
question_column=question_column,
|
||||||
|
answer_column=answer_column,
|
||||||
|
filters=filters
|
||||||
|
)
|
||||||
save_file(new_config, output_path)
|
save_file(new_config, output_path)
|
||||||
|
|
||||||
finish_message = __SUCCESS_MESSAGE.format(command=make_sample_command(input_file, output_path))
|
finish_message = __SUCCESS_MESSAGE.format(command=make_sample_command(input_file, output_path))
|
||||||
|
click.clear()
|
||||||
click.echo(finish_message)
|
click.echo(finish_message)
|
||||||
|
|
||||||
|
|
||||||
|
def process_filters(input_file, header, separators):
|
||||||
|
df = pd.read_csv(input_file, header=header, sep=separators)
|
||||||
|
filters = add_filters_to_config(df)
|
||||||
|
return filters
|
||||||
|
|
||||||
|
|
||||||
|
def __inline_yes_or_no_question(question):
|
||||||
|
answer = YesNo(prompt=question, default='n').launch()
|
||||||
|
return answer
|
||||||
|
|
||||||
|
|
||||||
|
def add_filters_to_config(df: pd.DataFrame) -> List[List[FilterConfig]]:
|
||||||
|
config = Config()
|
||||||
|
should_add_filter = __inline_yes_or_no_question(__ADD_FILTER_QUESTION)
|
||||||
|
while should_add_filter:
|
||||||
|
config = add_filter_to_or_create_filter_group(df, config)
|
||||||
|
should_add_filter = __inline_yes_or_no_question(__ADD_FILTER_QUESTION)
|
||||||
|
return config.filters
|
||||||
|
|
||||||
|
|
||||||
|
def add_filter_to_or_create_filter_group(df: pd.DataFrame, config: Config) -> Config:
|
||||||
|
config_has_filters = len(config.filters) > 0
|
||||||
|
chosen_group = -1
|
||||||
|
if config_has_filters:
|
||||||
|
filter_options = [f'({"|".join(map(str, group)):.45s})' for group in config.filters]
|
||||||
|
filter_options = [f'Group{i+1}{s}' for i, s in enumerate(filter_options)]
|
||||||
|
cli = Bullet(
|
||||||
|
prompt="Select group: ",
|
||||||
|
choices=["Create new", *filter_options],
|
||||||
|
return_index=True,
|
||||||
|
)
|
||||||
|
chosen_group = cli.launch()[1] - 1
|
||||||
|
new_filter = create_filter_config(df)
|
||||||
|
if chosen_group < 0:
|
||||||
|
config.filters.append([new_filter])
|
||||||
|
else:
|
||||||
|
config.filters[chosen_group].append(new_filter)
|
||||||
|
return config
|
||||||
|
|
||||||
|
|
||||||
|
def create_filter_config(df: pd.DataFrame) -> FilterConfig:
|
||||||
|
options = list(df.columns)
|
||||||
|
cli = Bullet(
|
||||||
|
prompt="Select a columns to filter: ",
|
||||||
|
choices=list(map(str, options)),
|
||||||
|
return_index=True
|
||||||
|
)
|
||||||
|
chosen = cli.launch()[1]
|
||||||
|
filter_column = options[chosen]
|
||||||
|
columns_values = df[filter_column].unique()
|
||||||
|
values = Input(f'Which values fo filter out? values[{columns_values}]: ').launch()
|
||||||
|
new_filter = FilterConfig(column=filter_column, values=values)
|
||||||
|
return new_filter
|
||||||
|
|
||||||
|
|
||||||
def get_column(name: str) -> str:
|
def get_column(name: str) -> str:
|
||||||
answer = click.prompt(f'Which is your {name} column?', type=str, confirmation_prompt=True)
|
answer = click.prompt(f'Which is your {name} column?', type=str, confirmation_prompt=True)
|
||||||
return answer
|
return answer
|
||||||
|
Loading…
x
Reference in New Issue
Block a user