Browse Source

Create filters in configuration and implement it.

feature/create-config
gabriel becker 2 years ago
parent
commit
eaa82edc81
  1. 13
      src/ankimaker/commands/__init__.py
  2. 6
      src/ankimaker/commands/base_click.py
  3. 3
      src/ankimaker/commands/from_csv.py
  4. 1
      src/ankimaker/config/__init__.py
  5. 24
      src/ankimaker/config/configuration.py
  6. 16
      src/ankimaker/config/filters.py
  7. 5
      src/ankimaker/config/load_config.py
  8. 4
      src/ankimaker/generator/__init__.py
  9. 9
      src/ankimaker/generator/card.py
  10. 20
      src/ankimaker/generator/model.py
  11. 17
      src/ankimaker/generator/models.py
  12. 96
      src/ankimaker/tasks/basic_csv_to_anki.py
  13. 22
      src/ankimaker/tasks/config_tasks/create_config.py
  14. 2
      src/ankimaker/utils/files.py

13
src/ankimaker/commands/__init__.py

@ -1,10 +1,3 @@
import click from .base_click import cli
from .from_csv import generate_anki
from .make_config import make_csv_config
@click.group("cli")
def cli():
pass
from ..commands.from_csv import generate_anki
from ..commands.make_config import make_csv_config

6
src/ankimaker/commands/base_click.py

@ -0,0 +1,6 @@
import click
@click.group("cli")
def cli():
pass

3
src/ankimaker/commands/from_csv.py

@ -1,5 +1,6 @@
import click
import re import re
import click
from ankimaker.commands import cli from ankimaker.commands import cli
from ankimaker.tasks import basic_pandas_to_anki from ankimaker.tasks import basic_pandas_to_anki

1
src/ankimaker/config/__init__.py

@ -1,2 +1,3 @@
from .load_config import load_config_file from .load_config import load_config_file
from .configuration import AnkimakerConfig as Config from .configuration import AnkimakerConfig as Config
from .filters import FilterConfig

24
src/ankimaker/config/configuration.py

@ -1,5 +1,8 @@
import yaml import yaml
from typing import Iterable from typing import List
from .filters import FilterConfig
_empty_list = () _empty_list = ()
@ -9,22 +12,27 @@ class AnkimakerConfig(yaml.YAMLObject):
question_column = None question_column = None
answer_column = None answer_column = None
separators = ',' separators = ','
filters: Iterable[dict] = list() filters: List[List[FilterConfig]] = list()
def __init__( def __init__(self, header=None, answer_column=None, question_column=None, filters=tuple()):
self, header=None, answer_column=None, question_column=None, filters=_empty_list
):
AnkimakerConfig.answer_column = answer_column AnkimakerConfig.answer_column = answer_column
AnkimakerConfig.question_column = question_column AnkimakerConfig.question_column = question_column
AnkimakerConfig.header = header AnkimakerConfig.header = header
AnkimakerConfig.filters = filters
AnkimakerConfig.AnkimakerConfig = AnkimakerConfig AnkimakerConfig.AnkimakerConfig = AnkimakerConfig
AnkimakerConfig.filters = list(map(lambda x: FilterConfig, filters))
@staticmethod @staticmethod
def loader(configuration_content): def loader(configuration_content):
content = configuration_content['AnkimakerConfig'] if isinstance(configuration_content, dict):
content = configuration_content['AnkimakerConfig']
else:
content = configuration_content
AnkimakerConfig.header = content.header AnkimakerConfig.header = content.header
AnkimakerConfig.question_column = content.question_column AnkimakerConfig.question_column = content.question_column
AnkimakerConfig.answer_column = content.answer_column AnkimakerConfig.answer_column = content.answer_column
AnkimakerConfig.separators = content.separators AnkimakerConfig.separators = content.separators
AnkimakerConfig.filters = content.filters AnkimakerConfig.filters = [
[FilterConfig(**x) for x in or_filter]
for or_filter in content.filters
]

16
src/ankimaker/config/filters.py

@ -0,0 +1,16 @@
from typing import List, Union
class FilterConfig:
column: Union[str, int]
values: Union[List[Union[int, str]], Union[int, str]]
def __init__(self, column: str, values: Union[List[Union[int, str]], Union[int, str]]):
self.column = column
self.values = values
def __str__(self):
return f'<ankimaker.config.filters.FilterConfig {self.column}: {self.values} >'
def __repr__(self):
return self.__str__()

5
src/ankimaker/config/load_config.py

@ -1,5 +1,6 @@
from pathlib import Path import os
import yaml import yaml
from pathlib import Path
from .configuration import AnkimakerConfig from .configuration import AnkimakerConfig
@ -10,7 +11,7 @@ def load_config_file(file_path: str):
:param file_path: Path to yaml file with configuration :param file_path: Path to yaml file with configuration
:return: Dict config :return: Dict config
""" """
file_path = Path(file_path) file_path = Path(file_path if '~' not in file_path else os.path.expanduser(file_path))
assert file_path.exists() assert file_path.exists()
assert file_path.is_file() assert file_path.is_file()
with open(file_path, 'r') as file: with open(file_path, 'r') as file:

4
src/ankimaker/generator/__init__.py

@ -1,5 +1,5 @@
from . import ( from . import (
deck, deck,
# models,
# card
) )
from .card import create_note
from .model import create_model

9
src/ankimaker/generator/card.py

@ -0,0 +1,9 @@
import genanki
def create_note(model, fields):
note = genanki.Note(
model=model,
fields=fields
)
return note

20
src/ankimaker/generator/model.py

@ -0,0 +1,20 @@
import genanki
def create_model():
my_model = genanki.Model(
1607392319,
'Simple Model',
fields=[
{'name': 'Question'},
{'name': 'Answer'},
],
templates=[
{
'name': 'Card 1',
'qfmt': '<div style="text-align: center;">{{Question}}</div>',
'afmt': '{{FrontSide}}<hr id="answer"><div style="text-align: center;">{{Answer}}</div>',
},
]
)
return my_model

17
src/ankimaker/generator/models.py

@ -0,0 +1,17 @@
import genanki as anki
simple_flashcard = anki.Model(
16073923194617823,
name='simple_flashcard',
fields=[
{'name': 'word'},
{'name': 'meaning'}
],
templates=[
{
'name': 'geneticname',
'qfmt': '{{word}}',
'afmt': '{{FrontSide}}<hr id="answer">{{meaning}}'
}
]
)

96
src/ankimaker/tasks/basic_csv_to_anki.py

@ -1,59 +1,35 @@
import genanki import genanki
import pandas as pd import pandas as pd
from typing import List
from functools import reduce
from ankimaker.config import Config
from ankimaker import generator, config from ankimaker import generator, config
from ankimaker.config import Config, FilterConfig
def create_model(): def load_csv(path: str) -> pd.DataFrame:
my_model = genanki.Model(
1607392319,
'Simple Model',
fields=[
{'name': 'Question'},
{'name': 'Answer'},
],
templates=[
{
'name': 'Card 1',
'qfmt': '<div style="text-align: center;">{{Question}}</div>',
'afmt': '{{FrontSide}}<hr id="answer"><div style="text-align: center;">{{Answer}}</div>',
},
]
)
return my_model
def create_note(model, fields):
note = genanki.Note(
model=model,
fields=fields
)
return note
def load_csv(path):
df = pd.read_csv(path, header=Config.header, sep=Config.separators) df = pd.read_csv(path, header=Config.header, sep=Config.separators)
df_columns_are_unnamed = all(map(lambda x: str(x).isnumeric(), df.columns)) df_columns_are_unnamed = all(map(lambda x: str(x).isnumeric(), df.columns))
if df_columns_are_unnamed: if df_columns_are_unnamed:
Config.answer_column = int(Config.answer_column) Config.answer_column = int(Config.answer_column)
Config.question_column = int(Config.question_column) Config.question_column = int(Config.question_column)
df = apply_filters(df)
return df return df
def add_df_to_deck(df: pd.DataFrame, deck: genanki.Deck): def add_df_to_deck(df: pd.DataFrame, deck: genanki.Deck) -> genanki.Deck:
model = create_model() model = generator.create_model()
for entry in df.to_dict('records'): for entry in df.to_dict('records'):
question = entry[Config.question_column] question = entry[Config.question_column]
answer = entry[Config.answer_column] answer = entry[Config.answer_column]
content_fields = (question, answer) content_fields = (question, answer)
note = create_note(model, fields=content_fields) note = generator.create_note(model, fields=content_fields)
deck.add_note(note) deck.add_note(note)
return deck return deck
def handle_config(config_file_path): def handle_config(config_file_path: str):
if config_file_path is None: if config_file_path is None:
Config.header = None Config.header = None
Config.question_column = 0 Config.question_column = 0
@ -62,6 +38,60 @@ def handle_config(config_file_path):
config.load_config_file(config_file_path) config.load_config_file(config_file_path)
def apply_filters(df: pd.DataFrame) -> pd.DataFrame:
"""
Returns filtered dataframe removing any row that does not correspond to at least one
of the filter groups defined in Configuration.
:param df: Original dataframe.
:return: Filtered Dataframe.
"""
there_are_no_filter_to_apply = len(Config.filters) == 0
if there_are_no_filter_to_apply:
return df
is_in_configured_filter_rules = load_filter_from_config(df)
df_filtered = df[is_in_configured_filter_rules]
return df_filtered
def load_filter_from_config(df: pd.DataFrame) -> pd.Series:
"""
Given a dataframe, returns a series indicating which rows should be kept according to loaded
Config [AnkimakerConfig]. The rows presented in any filter group should be kept.
:param df: Original dataframe.
:return pd.Series: Boolean Series to filter df.
"""
group_filters: List[pd.Series] = list()
for group in Config.filters:
if len(group) > 0:
group_filters.append(
create_group_filter(df, group)
)
config_filter = reduce(lambda a, b: a | b, group_filters)
return config_filter
def create_group_filter(df: pd.DataFrame, group: List[FilterConfig]) -> pd.Series:
"""
Creates a boolean series indicating which rows are in the filters configuration defined
group to be used to filter the dataframe.
:param df: Input dataframe to be filtered.
:param group: Filter defined Group.
:return: Series of boolean indicating rows that are in the group.
"""
rule: FilterConfig
query: List[pd.Series] = list()
for rule in group:
__assert_rule_is_valid(df, rule)
is_in_rule = df[rule.column].apply(lambda x: x in rule.values)
query.append(is_in_rule)
is_in_group = reduce(lambda a, b: a & b, query)
return is_in_group
def __assert_rule_is_valid(df: pd.DataFrame, rule: FilterConfig):
assert rule.column in df.columns
def basic_pandas_to_anki(csv_path, output_path, name, config_file_path): def basic_pandas_to_anki(csv_path, output_path, name, config_file_path):
handle_config(config_file_path) handle_config(config_file_path)
df = load_csv(csv_path) df = load_csv(csv_path)

22
src/ankimaker/tasks/config_tasks/create_config.py

@ -1,3 +1,4 @@
import os
import yaml import yaml
import click import click
import pandas as pd import pandas as pd
@ -23,6 +24,7 @@ __COMMAND_SAMPLE = """ankimaker csv \
--conf {output} --conf {output}
""" """
def create_config(input_file, output_path): def create_config(input_file, output_path):
new_config = Config() new_config = Config()
@ -33,10 +35,20 @@ def create_config(input_file, output_path):
input_file, read_option='header', header=new_config.header, input_file, read_option='header', header=new_config.header,
sep=new_config.separators, option_type=int sep=new_config.separators, option_type=int
) )
new_config.question_column = get_column('question')
new_config.answer_column = get_column('answer')
save_file(new_config, output_path)
finish_message = __SUCCESS_MESSAGE.format(command=make_sample_command(input_file, output_path)) finish_message = __SUCCESS_MESSAGE.format(command=make_sample_command(input_file, output_path))
click.echo(finish_message) click.echo(finish_message)
def get_column(name: str) -> str:
answer = click.prompt(f'Which is your {name} column?', type=str, confirmation_prompt=True)
return answer
def handle_read_option(input_file, read_option, option_type: Type = str, **kargs): def handle_read_option(input_file, read_option, option_type: Type = str, **kargs):
preview: str preview: str
is_finished = False is_finished = False
@ -66,12 +78,14 @@ def load_preview(input_file, *args, **kargs):
def save_file(config: Config, file_path): def save_file(config: Config, file_path):
f = open(file_path, 'w') if '~' in file_path:
yaml.dump(config, f) file_path = os.path.expanduser(file_path)
with open(file_path, 'w') as f:
yaml.dump(config, f)
def make_sample_command(inputf, output): def make_sample_command(input_config, output):
command = __COMMAND_SAMPLE.format( command = __COMMAND_SAMPLE.format(
input=inputf, output=output input=input_config, output=output
) )
return command return command

2
src/ankimaker/utils/files.py

@ -1,3 +1,3 @@
def get_fyle_type(filename): def get_fyle_type(filename: str) -> str:
filetype = filename.split('.')[-1] if len(filename.split('.')) > 0 else None filetype = filename.split('.')[-1] if len(filename.split('.')) > 0 else None
return filetype return filetype

Loading…
Cancel
Save