Browse Source

Create filters in configuration and implement it.

feature/create-config
gabriel becker 2 years ago
parent
commit
eaa82edc81
  1. 13
      src/ankimaker/commands/__init__.py
  2. 6
      src/ankimaker/commands/base_click.py
  3. 3
      src/ankimaker/commands/from_csv.py
  4. 1
      src/ankimaker/config/__init__.py
  5. 24
      src/ankimaker/config/configuration.py
  6. 16
      src/ankimaker/config/filters.py
  7. 5
      src/ankimaker/config/load_config.py
  8. 4
      src/ankimaker/generator/__init__.py
  9. 9
      src/ankimaker/generator/card.py
  10. 20
      src/ankimaker/generator/model.py
  11. 17
      src/ankimaker/generator/models.py
  12. 96
      src/ankimaker/tasks/basic_csv_to_anki.py
  13. 22
      src/ankimaker/tasks/config_tasks/create_config.py
  14. 2
      src/ankimaker/utils/files.py

13
src/ankimaker/commands/__init__.py

@ -1,10 +1,3 @@
import click
@click.group("cli")
def cli():
pass
from ..commands.from_csv import generate_anki
from ..commands.make_config import make_csv_config
from .base_click import cli
from .from_csv import generate_anki
from .make_config import make_csv_config

6
src/ankimaker/commands/base_click.py

@ -0,0 +1,6 @@
import click
@click.group("cli")
def cli():
pass

3
src/ankimaker/commands/from_csv.py

@ -1,5 +1,6 @@
import click
import re
import click
from ankimaker.commands import cli
from ankimaker.tasks import basic_pandas_to_anki

1
src/ankimaker/config/__init__.py

@ -1,2 +1,3 @@
from .load_config import load_config_file
from .configuration import AnkimakerConfig as Config
from .filters import FilterConfig

24
src/ankimaker/config/configuration.py

@ -1,5 +1,8 @@
import yaml
from typing import Iterable
from typing import List
from .filters import FilterConfig
_empty_list = ()
@ -9,22 +12,27 @@ class AnkimakerConfig(yaml.YAMLObject):
question_column = None
answer_column = None
separators = ','
filters: Iterable[dict] = list()
filters: List[List[FilterConfig]] = list()
def __init__(
self, header=None, answer_column=None, question_column=None, filters=_empty_list
):
def __init__(self, header=None, answer_column=None, question_column=None, filters=tuple()):
AnkimakerConfig.answer_column = answer_column
AnkimakerConfig.question_column = question_column
AnkimakerConfig.header = header
AnkimakerConfig.filters = filters
AnkimakerConfig.AnkimakerConfig = AnkimakerConfig
AnkimakerConfig.filters = list(map(lambda x: FilterConfig, filters))
@staticmethod
def loader(configuration_content):
content = configuration_content['AnkimakerConfig']
if isinstance(configuration_content, dict):
content = configuration_content['AnkimakerConfig']
else:
content = configuration_content
AnkimakerConfig.header = content.header
AnkimakerConfig.question_column = content.question_column
AnkimakerConfig.answer_column = content.answer_column
AnkimakerConfig.separators = content.separators
AnkimakerConfig.filters = content.filters
AnkimakerConfig.filters = [
[FilterConfig(**x) for x in or_filter]
for or_filter in content.filters
]

16
src/ankimaker/config/filters.py

@ -0,0 +1,16 @@
from typing import List, Union
class FilterConfig:
column: Union[str, int]
values: Union[List[Union[int, str]], Union[int, str]]
def __init__(self, column: str, values: Union[List[Union[int, str]], Union[int, str]]):
self.column = column
self.values = values
def __str__(self):
return f'<ankimaker.config.filters.FilterConfig {self.column}: {self.values} >'
def __repr__(self):
return self.__str__()

5
src/ankimaker/config/load_config.py

@ -1,5 +1,6 @@
from pathlib import Path
import os
import yaml
from pathlib import Path
from .configuration import AnkimakerConfig
@ -10,7 +11,7 @@ def load_config_file(file_path: str):
:param file_path: Path to yaml file with configuration
:return: Dict config
"""
file_path = Path(file_path)
file_path = Path(file_path if '~' not in file_path else os.path.expanduser(file_path))
assert file_path.exists()
assert file_path.is_file()
with open(file_path, 'r') as file:

4
src/ankimaker/generator/__init__.py

@ -1,5 +1,5 @@
from . import (
deck,
# models,
# card
)
from .card import create_note
from .model import create_model

9
src/ankimaker/generator/card.py

@ -0,0 +1,9 @@
import genanki
def create_note(model, fields):
note = genanki.Note(
model=model,
fields=fields
)
return note

20
src/ankimaker/generator/model.py

@ -0,0 +1,20 @@
import genanki
def create_model():
my_model = genanki.Model(
1607392319,
'Simple Model',
fields=[
{'name': 'Question'},
{'name': 'Answer'},
],
templates=[
{
'name': 'Card 1',
'qfmt': '<div style="text-align: center;">{{Question}}</div>',
'afmt': '{{FrontSide}}<hr id="answer"><div style="text-align: center;">{{Answer}}</div>',
},
]
)
return my_model

17
src/ankimaker/generator/models.py

@ -0,0 +1,17 @@
import genanki as anki
simple_flashcard = anki.Model(
16073923194617823,
name='simple_flashcard',
fields=[
{'name': 'word'},
{'name': 'meaning'}
],
templates=[
{
'name': 'geneticname',
'qfmt': '{{word}}',
'afmt': '{{FrontSide}}<hr id="answer">{{meaning}}'
}
]
)

96
src/ankimaker/tasks/basic_csv_to_anki.py

@ -1,59 +1,35 @@
import genanki
import pandas as pd
from typing import List
from functools import reduce
from ankimaker.config import Config
from ankimaker import generator, config
from ankimaker.config import Config, FilterConfig
def create_model():
my_model = genanki.Model(
1607392319,
'Simple Model',
fields=[
{'name': 'Question'},
{'name': 'Answer'},
],
templates=[
{
'name': 'Card 1',
'qfmt': '<div style="text-align: center;">{{Question}}</div>',
'afmt': '{{FrontSide}}<hr id="answer"><div style="text-align: center;">{{Answer}}</div>',
},
]
)
return my_model
def create_note(model, fields):
note = genanki.Note(
model=model,
fields=fields
)
return note
def load_csv(path):
def load_csv(path: str) -> pd.DataFrame:
df = pd.read_csv(path, header=Config.header, sep=Config.separators)
df_columns_are_unnamed = all(map(lambda x: str(x).isnumeric(), df.columns))
if df_columns_are_unnamed:
Config.answer_column = int(Config.answer_column)
Config.question_column = int(Config.question_column)
df = apply_filters(df)
return df
def add_df_to_deck(df: pd.DataFrame, deck: genanki.Deck):
model = create_model()
def add_df_to_deck(df: pd.DataFrame, deck: genanki.Deck) -> genanki.Deck:
model = generator.create_model()
for entry in df.to_dict('records'):
question = entry[Config.question_column]
answer = entry[Config.answer_column]
content_fields = (question, answer)
note = create_note(model, fields=content_fields)
note = generator.create_note(model, fields=content_fields)
deck.add_note(note)
return deck
def handle_config(config_file_path):
def handle_config(config_file_path: str):
if config_file_path is None:
Config.header = None
Config.question_column = 0
@ -62,6 +38,60 @@ def handle_config(config_file_path):
config.load_config_file(config_file_path)
def apply_filters(df: pd.DataFrame) -> pd.DataFrame:
"""
Returns filtered dataframe removing any row that does not correspond to at least one
of the filter groups defined in Configuration.
:param df: Original dataframe.
:return: Filtered Dataframe.
"""
there_are_no_filter_to_apply = len(Config.filters) == 0
if there_are_no_filter_to_apply:
return df
is_in_configured_filter_rules = load_filter_from_config(df)
df_filtered = df[is_in_configured_filter_rules]
return df_filtered
def load_filter_from_config(df: pd.DataFrame) -> pd.Series:
"""
Given a dataframe, returns a series indicating which rows should be kept according to loaded
Config [AnkimakerConfig]. The rows presented in any filter group should be kept.
:param df: Original dataframe.
:return pd.Series: Boolean Series to filter df.
"""
group_filters: List[pd.Series] = list()
for group in Config.filters:
if len(group) > 0:
group_filters.append(
create_group_filter(df, group)
)
config_filter = reduce(lambda a, b: a | b, group_filters)
return config_filter
def create_group_filter(df: pd.DataFrame, group: List[FilterConfig]) -> pd.Series:
"""
Creates a boolean series indicating which rows are in the filters configuration defined
group to be used to filter the dataframe.
:param df: Input dataframe to be filtered.
:param group: Filter defined Group.
:return: Series of boolean indicating rows that are in the group.
"""
rule: FilterConfig
query: List[pd.Series] = list()
for rule in group:
__assert_rule_is_valid(df, rule)
is_in_rule = df[rule.column].apply(lambda x: x in rule.values)
query.append(is_in_rule)
is_in_group = reduce(lambda a, b: a & b, query)
return is_in_group
def __assert_rule_is_valid(df: pd.DataFrame, rule: FilterConfig):
assert rule.column in df.columns
def basic_pandas_to_anki(csv_path, output_path, name, config_file_path):
handle_config(config_file_path)
df = load_csv(csv_path)

22
src/ankimaker/tasks/config_tasks/create_config.py

@ -1,3 +1,4 @@
import os
import yaml
import click
import pandas as pd
@ -23,6 +24,7 @@ __COMMAND_SAMPLE = """ankimaker csv \
--conf {output}
"""
def create_config(input_file, output_path):
new_config = Config()
@ -33,10 +35,20 @@ def create_config(input_file, output_path):
input_file, read_option='header', header=new_config.header,
sep=new_config.separators, option_type=int
)
new_config.question_column = get_column('question')
new_config.answer_column = get_column('answer')
save_file(new_config, output_path)
finish_message = __SUCCESS_MESSAGE.format(command=make_sample_command(input_file, output_path))
click.echo(finish_message)
def get_column(name: str) -> str:
answer = click.prompt(f'Which is your {name} column?', type=str, confirmation_prompt=True)
return answer
def handle_read_option(input_file, read_option, option_type: Type = str, **kargs):
preview: str
is_finished = False
@ -66,12 +78,14 @@ def load_preview(input_file, *args, **kargs):
def save_file(config: Config, file_path):
f = open(file_path, 'w')
yaml.dump(config, f)
if '~' in file_path:
file_path = os.path.expanduser(file_path)
with open(file_path, 'w') as f:
yaml.dump(config, f)
def make_sample_command(inputf, output):
def make_sample_command(input_config, output):
command = __COMMAND_SAMPLE.format(
input=inputf, output=output
input=input_config, output=output
)
return command

2
src/ankimaker/utils/files.py

@ -1,3 +1,3 @@
def get_fyle_type(filename):
def get_fyle_type(filename: str) -> str:
filetype = filename.split('.')[-1] if len(filename.split('.')) > 0 else None
return filetype

Loading…
Cancel
Save