|
|
|
@ -32,6 +32,57 @@ $ conda install cookiecutter
|
|
|
|
|
[![asciicast](https://asciinema.org/a/9bgl5qh17wlop4xyxu9n9wr02.png)](https://asciinema.org/a/9bgl5qh17wlop4xyxu9n9wr02) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### The resulting directory structure |
|
|
|
|
------------ |
|
|
|
|
|
|
|
|
|
The directory structure of your new project looks like this: |
|
|
|
|
|
|
|
|
|
``` |
|
|
|
|
├── LICENSE |
|
|
|
|
├── Makefile <- Makefile with commands like `make data` or `make train` |
|
|
|
|
├── README.md <- The top-level README for developers using this project. |
|
|
|
|
├── data |
|
|
|
|
│ ├── external <- Data from third party sources. |
|
|
|
|
│ ├── interim <- Intermediate data that has been transformed. |
|
|
|
|
│ ├── processed <- The final, canonical data sets for modeling. |
|
|
|
|
│ └── raw <- The original, immutable data dump. |
|
|
|
|
│ |
|
|
|
|
├── docs <- A default Sphinx project; see sphinx-doc.org for details |
|
|
|
|
│ |
|
|
|
|
├── models <- Trained and serialized models, model predictions, or model summaries |
|
|
|
|
│ |
|
|
|
|
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering), |
|
|
|
|
│ the creator's initials, and a short `-` delimited description, e.g. |
|
|
|
|
│ `1.0-jqp-initial-data-exploration`. |
|
|
|
|
│ |
|
|
|
|
├── references <- Data dictionaries, manuals, and all other explanatory materials. |
|
|
|
|
│ |
|
|
|
|
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc. |
|
|
|
|
│ └── figures <- Generated graphics and figures to be used in reporting |
|
|
|
|
│ |
|
|
|
|
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g. |
|
|
|
|
│ generated with `pip freeze > requirements.txt` |
|
|
|
|
│ |
|
|
|
|
├── src <- Source code for use in this project. |
|
|
|
|
│ ├── __init__.py <- Makes src a Python module |
|
|
|
|
│ │ |
|
|
|
|
│ ├── data <- Scripts to download or generate data |
|
|
|
|
│ │ └── make_dataset.py |
|
|
|
|
│ │ |
|
|
|
|
│ ├── features <- Scripts to turn raw data into features for modeling |
|
|
|
|
│ │ └── build_features.py |
|
|
|
|
│ │ |
|
|
|
|
│ ├── models <- Scripts to train models and then use trained models to make |
|
|
|
|
│ │ │ predictions |
|
|
|
|
│ │ ├── predict_model.py |
|
|
|
|
│ │ └── train_model.py |
|
|
|
|
│ │ |
|
|
|
|
│ └── visualization <- Scripts to create exploratory and results oriented visualizations |
|
|
|
|
│ └── visualize.py |
|
|
|
|
│ |
|
|
|
|
└── tox.ini <- tox file with settings for running tox; see tox.testrun.org |
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
## Contributing |
|
|
|
|
|
|
|
|
|
We welcome contributions! [See the docs for guidelines](https://drivendata.github.io/cookiecutter-data-science/#contributing). |
|
|
|
|