Compare commits
2 Commits
791caa3624
...
d46f59abc0
Author | SHA1 | Date | |
---|---|---|---|
|
d46f59abc0 | ||
|
eaa82edc81 |
5
.gitignore
vendored
5
.gitignore
vendored
@ -157,4 +157,7 @@ cython_debug/
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
||||
.idea/
|
||||
|
||||
# Project Specific
|
||||
scripts/
|
@ -1,4 +1,5 @@
|
||||
click
|
||||
genanki
|
||||
pandas
|
||||
pyyaml
|
||||
pyyaml
|
||||
bullet
|
1
setup.py
1
setup.py
@ -27,6 +27,7 @@ setup(
|
||||
"genanki",
|
||||
"pandas",
|
||||
"pyyaml",
|
||||
"bullet"
|
||||
],
|
||||
long_description_content_type='text/markdown',
|
||||
)
|
||||
|
@ -1,10 +1,3 @@
|
||||
import click
|
||||
|
||||
|
||||
@click.group("cli")
|
||||
def cli():
|
||||
pass
|
||||
|
||||
|
||||
from ..commands.from_csv import generate_anki
|
||||
from ..commands.make_config import make_csv_config
|
||||
from .base_click import cli
|
||||
from .from_csv import generate_anki
|
||||
from .make_config import make_csv_config
|
||||
|
6
src/ankimaker/commands/base_click.py
Normal file
6
src/ankimaker/commands/base_click.py
Normal file
@ -0,0 +1,6 @@
|
||||
import click
|
||||
|
||||
|
||||
@click.group("cli")
|
||||
def cli():
|
||||
pass
|
@ -1,5 +1,6 @@
|
||||
import click
|
||||
import re
|
||||
import click
|
||||
|
||||
from ankimaker.commands import cli
|
||||
from ankimaker.tasks import basic_pandas_to_anki
|
||||
|
||||
|
@ -1,2 +1,3 @@
|
||||
from .load_config import load_config_file
|
||||
from .configuration import AnkimakerConfig as Config
|
||||
from .filters import FilterConfig
|
||||
|
@ -1,5 +1,8 @@
|
||||
import yaml
|
||||
from typing import Iterable
|
||||
from typing import List
|
||||
|
||||
from .filters import FilterConfig
|
||||
|
||||
_empty_list = ()
|
||||
|
||||
|
||||
@ -9,22 +12,41 @@ class AnkimakerConfig(yaml.YAMLObject):
|
||||
question_column = None
|
||||
answer_column = None
|
||||
separators = ','
|
||||
filters: Iterable[dict] = list()
|
||||
filters: List[List[FilterConfig]] = list()
|
||||
|
||||
def __init__(
|
||||
self, header=None, answer_column=None, question_column=None, filters=_empty_list
|
||||
self, separators=',', header=None, answer_column=None, question_column=None,
|
||||
filters=tuple(), *args, **karhs
|
||||
):
|
||||
AnkimakerConfig.answer_column = answer_column
|
||||
AnkimakerConfig.question_column = question_column
|
||||
AnkimakerConfig.header = header
|
||||
AnkimakerConfig.filters = filters
|
||||
AnkimakerConfig.AnkimakerConfig = AnkimakerConfig
|
||||
self.answer_column = answer_column
|
||||
self.question_column = question_column
|
||||
self.header = header
|
||||
self.separators = separators
|
||||
self.filters = _conditionally_create_new_filters(filters)
|
||||
|
||||
@staticmethod
|
||||
def loader(configuration_content):
|
||||
content = configuration_content['AnkimakerConfig']
|
||||
if isinstance(configuration_content, dict):
|
||||
content = configuration_content['AnkimakerConfig']
|
||||
else:
|
||||
content = configuration_content
|
||||
AnkimakerConfig.header = content.header
|
||||
AnkimakerConfig.question_column = content.question_column
|
||||
AnkimakerConfig.answer_column = content.answer_column
|
||||
AnkimakerConfig.separators = content.separators
|
||||
AnkimakerConfig.filters = content.filters
|
||||
AnkimakerConfig.filters = _conditionally_create_new_filters(content.filters)
|
||||
|
||||
|
||||
def _conditionally_create_new_filters(filters):
|
||||
conf_has_filters = len(filters) > 0
|
||||
if conf_has_filters:
|
||||
should_cast_filter = not isinstance(filters[0][0], FilterConfig)
|
||||
if should_cast_filter:
|
||||
new_filters = [
|
||||
[FilterConfig(**x) for x in or_filter]
|
||||
for or_filter in filters
|
||||
]
|
||||
else:
|
||||
new_filters = filters
|
||||
return new_filters
|
||||
return list()
|
||||
|
19
src/ankimaker/config/filters.py
Normal file
19
src/ankimaker/config/filters.py
Normal file
@ -0,0 +1,19 @@
|
||||
import yaml
|
||||
|
||||
from typing import List, Union
|
||||
|
||||
|
||||
class FilterConfig(yaml.YAMLObject):
|
||||
yaml_tag = '!fitlerconfig'
|
||||
column: Union[str, int]
|
||||
values: Union[List[Union[int, str]], Union[int, str]]
|
||||
|
||||
def __init__(self, column: str, values: Union[List[Union[int, str]], Union[int, str]]):
|
||||
self.column = column
|
||||
self.values = values
|
||||
|
||||
def __str__(self):
|
||||
return f'<F({self.column}:{self.values})>'
|
||||
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
@ -1,5 +1,6 @@
|
||||
from pathlib import Path
|
||||
import os
|
||||
import yaml
|
||||
from pathlib import Path
|
||||
|
||||
from .configuration import AnkimakerConfig
|
||||
|
||||
@ -10,7 +11,7 @@ def load_config_file(file_path: str):
|
||||
:param file_path: Path to yaml file with configuration
|
||||
:return: Dict config
|
||||
"""
|
||||
file_path = Path(file_path)
|
||||
file_path = Path(file_path if '~' not in file_path else os.path.expanduser(file_path))
|
||||
assert file_path.exists()
|
||||
assert file_path.is_file()
|
||||
with open(file_path, 'r') as file:
|
||||
|
@ -1,5 +1,5 @@
|
||||
from . import (
|
||||
deck,
|
||||
# models,
|
||||
# card
|
||||
)
|
||||
from .card import create_note
|
||||
from .model import create_model
|
||||
|
9
src/ankimaker/generator/card.py
Normal file
9
src/ankimaker/generator/card.py
Normal file
@ -0,0 +1,9 @@
|
||||
import genanki
|
||||
|
||||
|
||||
def create_note(model, fields):
|
||||
note = genanki.Note(
|
||||
model=model,
|
||||
fields=fields
|
||||
)
|
||||
return note
|
20
src/ankimaker/generator/model.py
Normal file
20
src/ankimaker/generator/model.py
Normal file
@ -0,0 +1,20 @@
|
||||
import genanki
|
||||
|
||||
|
||||
def create_model():
|
||||
my_model = genanki.Model(
|
||||
1607392319,
|
||||
'Simple Model',
|
||||
fields=[
|
||||
{'name': 'Question'},
|
||||
{'name': 'Answer'},
|
||||
],
|
||||
templates=[
|
||||
{
|
||||
'name': 'Card 1',
|
||||
'qfmt': '<div style="text-align: center;">{{Question}}</div>',
|
||||
'afmt': '{{FrontSide}}<hr id="answer"><div style="text-align: center;">{{Answer}}</div>',
|
||||
},
|
||||
]
|
||||
)
|
||||
return my_model
|
17
src/ankimaker/generator/models.py
Normal file
17
src/ankimaker/generator/models.py
Normal file
@ -0,0 +1,17 @@
|
||||
import genanki as anki
|
||||
|
||||
simple_flashcard = anki.Model(
|
||||
16073923194617823,
|
||||
name='simple_flashcard',
|
||||
fields=[
|
||||
{'name': 'word'},
|
||||
{'name': 'meaning'}
|
||||
],
|
||||
templates=[
|
||||
{
|
||||
'name': 'geneticname',
|
||||
'qfmt': '{{word}}',
|
||||
'afmt': '{{FrontSide}}<hr id="answer">{{meaning}}'
|
||||
}
|
||||
]
|
||||
)
|
@ -1,59 +1,35 @@
|
||||
import genanki
|
||||
import pandas as pd
|
||||
from typing import List
|
||||
from functools import reduce
|
||||
|
||||
from ankimaker.config import Config
|
||||
from ankimaker import generator, config
|
||||
from ankimaker.config import Config, FilterConfig
|
||||
|
||||
|
||||
def create_model():
|
||||
my_model = genanki.Model(
|
||||
1607392319,
|
||||
'Simple Model',
|
||||
fields=[
|
||||
{'name': 'Question'},
|
||||
{'name': 'Answer'},
|
||||
],
|
||||
templates=[
|
||||
{
|
||||
'name': 'Card 1',
|
||||
'qfmt': '<div style="text-align: center;">{{Question}}</div>',
|
||||
'afmt': '{{FrontSide}}<hr id="answer"><div style="text-align: center;">{{Answer}}</div>',
|
||||
},
|
||||
]
|
||||
)
|
||||
return my_model
|
||||
|
||||
|
||||
def create_note(model, fields):
|
||||
note = genanki.Note(
|
||||
model=model,
|
||||
fields=fields
|
||||
)
|
||||
return note
|
||||
|
||||
|
||||
def load_csv(path):
|
||||
def load_csv(path: str) -> pd.DataFrame:
|
||||
df = pd.read_csv(path, header=Config.header, sep=Config.separators)
|
||||
df_columns_are_unnamed = all(map(lambda x: str(x).isnumeric(), df.columns))
|
||||
if df_columns_are_unnamed:
|
||||
Config.answer_column = int(Config.answer_column)
|
||||
Config.question_column = int(Config.question_column)
|
||||
df = apply_filters(df)
|
||||
return df
|
||||
|
||||
|
||||
def add_df_to_deck(df: pd.DataFrame, deck: genanki.Deck):
|
||||
model = create_model()
|
||||
def add_df_to_deck(df: pd.DataFrame, deck: genanki.Deck) -> genanki.Deck:
|
||||
model = generator.create_model()
|
||||
|
||||
for entry in df.to_dict('records'):
|
||||
question = entry[Config.question_column]
|
||||
answer = entry[Config.answer_column]
|
||||
content_fields = (question, answer)
|
||||
note = create_note(model, fields=content_fields)
|
||||
note = generator.create_note(model, fields=content_fields)
|
||||
deck.add_note(note)
|
||||
return deck
|
||||
|
||||
|
||||
def handle_config(config_file_path):
|
||||
def handle_config(config_file_path: str):
|
||||
if config_file_path is None:
|
||||
Config.header = None
|
||||
Config.question_column = 0
|
||||
@ -62,6 +38,60 @@ def handle_config(config_file_path):
|
||||
config.load_config_file(config_file_path)
|
||||
|
||||
|
||||
def apply_filters(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""
|
||||
Returns filtered dataframe removing any row that does not correspond to at least one
|
||||
of the filter groups defined in Configuration.
|
||||
:param df: Original dataframe.
|
||||
:return: Filtered Dataframe.
|
||||
"""
|
||||
there_are_no_filter_to_apply = len(Config.filters) == 0
|
||||
if there_are_no_filter_to_apply:
|
||||
return df
|
||||
is_in_configured_filter_rules = load_filter_from_config(df)
|
||||
df_filtered = df[is_in_configured_filter_rules]
|
||||
return df_filtered
|
||||
|
||||
|
||||
def load_filter_from_config(df: pd.DataFrame) -> pd.Series:
|
||||
"""
|
||||
Given a dataframe, returns a series indicating which rows should be kept according to loaded
|
||||
Config [AnkimakerConfig]. The rows presented in any filter group should be kept.
|
||||
:param df: Original dataframe.
|
||||
:return pd.Series: Boolean Series to filter df.
|
||||
"""
|
||||
group_filters: List[pd.Series] = list()
|
||||
for group in Config.filters:
|
||||
if len(group) > 0:
|
||||
group_filters.append(
|
||||
create_group_filter(df, group)
|
||||
)
|
||||
config_filter = reduce(lambda a, b: a | b, group_filters)
|
||||
return config_filter
|
||||
|
||||
|
||||
def create_group_filter(df: pd.DataFrame, group: List[FilterConfig]) -> pd.Series:
|
||||
"""
|
||||
Creates a boolean series indicating which rows are in the filters configuration defined
|
||||
group to be used to filter the dataframe.
|
||||
:param df: Input dataframe to be filtered.
|
||||
:param group: Filter defined Group.
|
||||
:return: Series of boolean indicating rows that are in the group.
|
||||
"""
|
||||
rule: FilterConfig
|
||||
query: List[pd.Series] = list()
|
||||
for rule in group:
|
||||
__assert_rule_is_valid(df, rule)
|
||||
is_in_rule = df[rule.column].apply(lambda x: x in rule.values)
|
||||
query.append(is_in_rule)
|
||||
is_in_group = reduce(lambda a, b: a & b, query)
|
||||
return is_in_group
|
||||
|
||||
|
||||
def __assert_rule_is_valid(df: pd.DataFrame, rule: FilterConfig):
|
||||
assert rule.column in df.columns
|
||||
|
||||
|
||||
def basic_pandas_to_anki(csv_path, output_path, name, config_file_path):
|
||||
handle_config(config_file_path)
|
||||
df = load_csv(csv_path)
|
||||
|
@ -1,9 +1,12 @@
|
||||
import os
|
||||
|
||||
import yaml
|
||||
import click
|
||||
import pandas as pd
|
||||
from typing import Type
|
||||
from typing import Type, List
|
||||
from bullet import Bullet, Input, YesNo
|
||||
|
||||
from ankimaker.config import Config
|
||||
from ankimaker.config import Config, FilterConfig
|
||||
|
||||
|
||||
__CONFIRMATION_QUESTION = """
|
||||
@ -23,20 +26,99 @@ __COMMAND_SAMPLE = """ankimaker csv \
|
||||
--conf {output}
|
||||
"""
|
||||
|
||||
def create_config(input_file, output_path):
|
||||
new_config = Config()
|
||||
|
||||
new_config.separators = handle_read_option(
|
||||
input_file, read_option='sep', sep=new_config.separators
|
||||
__ADD_FILTER_QUESTION = """Do you want do add a filter to the configuration?"""
|
||||
|
||||
|
||||
def create_config(input_file, output_path):
|
||||
|
||||
separators = handle_read_option(
|
||||
input_file, read_option='sep', sep=','
|
||||
)
|
||||
new_config.header = handle_read_option(
|
||||
input_file, read_option='header', header=new_config.header,
|
||||
sep=new_config.separators, option_type=int
|
||||
header = handle_read_option(
|
||||
input_file, read_option='header', header=None,
|
||||
sep=separators, option_type=int
|
||||
)
|
||||
|
||||
question_column = get_column('question')
|
||||
answer_column = get_column('answer')
|
||||
|
||||
filters = process_filters(input_file, header, separators)
|
||||
|
||||
new_config = Config(
|
||||
separators=separators,
|
||||
header=header,
|
||||
question_column=question_column,
|
||||
answer_column=answer_column,
|
||||
filters=filters
|
||||
)
|
||||
save_file(new_config, output_path)
|
||||
|
||||
finish_message = __SUCCESS_MESSAGE.format(command=make_sample_command(input_file, output_path))
|
||||
click.clear()
|
||||
click.echo(finish_message)
|
||||
|
||||
|
||||
def process_filters(input_file, header, separators):
|
||||
df = pd.read_csv(input_file, header=header, sep=separators)
|
||||
filters = add_filters_to_config(df)
|
||||
return filters
|
||||
|
||||
|
||||
def __inline_yes_or_no_question(question):
|
||||
answer = YesNo(prompt=question, default='n').launch()
|
||||
return answer
|
||||
|
||||
|
||||
def add_filters_to_config(df: pd.DataFrame) -> List[List[FilterConfig]]:
|
||||
config = Config()
|
||||
should_add_filter = __inline_yes_or_no_question(__ADD_FILTER_QUESTION)
|
||||
while should_add_filter:
|
||||
config = add_filter_to_or_create_filter_group(df, config)
|
||||
should_add_filter = __inline_yes_or_no_question(__ADD_FILTER_QUESTION)
|
||||
return config.filters
|
||||
|
||||
|
||||
def add_filter_to_or_create_filter_group(df: pd.DataFrame, config: Config) -> Config:
|
||||
config_has_filters = len(config.filters) > 0
|
||||
chosen_group = -1
|
||||
if config_has_filters:
|
||||
filter_options = [f'({"|".join(map(str, group)):.45s})' for group in config.filters]
|
||||
filter_options = [f'Group{i+1}{s}' for i, s in enumerate(filter_options)]
|
||||
cli = Bullet(
|
||||
prompt="Select group: ",
|
||||
choices=["Create new", *filter_options],
|
||||
return_index=True,
|
||||
)
|
||||
chosen_group = cli.launch()[1] - 1
|
||||
new_filter = create_filter_config(df)
|
||||
if chosen_group < 0:
|
||||
config.filters.append([new_filter])
|
||||
else:
|
||||
config.filters[chosen_group].append(new_filter)
|
||||
return config
|
||||
|
||||
|
||||
def create_filter_config(df: pd.DataFrame) -> FilterConfig:
|
||||
options = list(df.columns)
|
||||
cli = Bullet(
|
||||
prompt="Select a columns to filter: ",
|
||||
choices=list(map(str, options)),
|
||||
return_index=True
|
||||
)
|
||||
chosen = cli.launch()[1]
|
||||
filter_column = options[chosen]
|
||||
columns_values = df[filter_column].unique()
|
||||
values = Input(f'Which values fo filter out? values[{columns_values}]: ').launch()
|
||||
new_filter = FilterConfig(column=filter_column, values=values)
|
||||
return new_filter
|
||||
|
||||
|
||||
def get_column(name: str) -> str:
|
||||
answer = click.prompt(f'Which is your {name} column?', type=str, confirmation_prompt=True)
|
||||
return answer
|
||||
|
||||
|
||||
def handle_read_option(input_file, read_option, option_type: Type = str, **kargs):
|
||||
preview: str
|
||||
is_finished = False
|
||||
@ -66,12 +148,14 @@ def load_preview(input_file, *args, **kargs):
|
||||
|
||||
|
||||
def save_file(config: Config, file_path):
|
||||
f = open(file_path, 'w')
|
||||
yaml.dump(config, f)
|
||||
if '~' in file_path:
|
||||
file_path = os.path.expanduser(file_path)
|
||||
with open(file_path, 'w') as f:
|
||||
yaml.dump(config, f)
|
||||
|
||||
|
||||
def make_sample_command(inputf, output):
|
||||
def make_sample_command(input_config, output):
|
||||
command = __COMMAND_SAMPLE.format(
|
||||
input=inputf, output=output
|
||||
input=input_config, output=output
|
||||
)
|
||||
return command
|
||||
|
@ -1,3 +1,3 @@
|
||||
def get_fyle_type(filename):
|
||||
def get_fyle_type(filename: str) -> str:
|
||||
filetype = filename.split('.')[-1] if len(filename.split('.')) > 0 else None
|
||||
return filetype
|
||||
|
Loading…
x
Reference in New Issue
Block a user