Compare commits
2 Commits
791caa3624
...
d46f59abc0
Author | SHA1 | Date | |
---|---|---|---|
|
d46f59abc0 | ||
|
eaa82edc81 |
5
.gitignore
vendored
5
.gitignore
vendored
@ -157,4 +157,7 @@ cython_debug/
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
||||
.idea/
|
||||
|
||||
# Project Specific
|
||||
scripts/
|
@ -1,4 +1,5 @@
|
||||
click
|
||||
genanki
|
||||
pandas
|
||||
pyyaml
|
||||
pyyaml
|
||||
bullet
|
1
setup.py
1
setup.py
@ -27,6 +27,7 @@ setup(
|
||||
"genanki",
|
||||
"pandas",
|
||||
"pyyaml",
|
||||
"bullet"
|
||||
],
|
||||
long_description_content_type='text/markdown',
|
||||
)
|
||||
|
@ -1,10 +1,3 @@
|
||||
import click
|
||||
|
||||
|
||||
@click.group("cli")
|
||||
def cli():
|
||||
pass
|
||||
|
||||
|
||||
from ..commands.from_csv import generate_anki
|
||||
from ..commands.make_config import make_csv_config
|
||||
from .base_click import cli
|
||||
from .from_csv import generate_anki
|
||||
from .make_config import make_csv_config
|
||||
|
6
src/ankimaker/commands/base_click.py
Normal file
6
src/ankimaker/commands/base_click.py
Normal file
@ -0,0 +1,6 @@
|
||||
import click
|
||||
|
||||
|
||||
@click.group("cli")
|
||||
def cli():
|
||||
pass
|
@ -1,5 +1,6 @@
|
||||
import click
|
||||
import re
|
||||
import click
|
||||
|
||||
from ankimaker.commands import cli
|
||||
from ankimaker.tasks import basic_pandas_to_anki
|
||||
|
||||
|
@ -14,12 +14,15 @@ class AnkimakerConfig(yaml.YAMLObject):
|
||||
separators = ','
|
||||
filters: List[List[FilterConfig]] = list()
|
||||
|
||||
def __init__(self, header=None, answer_column=None, question_column=None, filters=tuple()):
|
||||
AnkimakerConfig.answer_column = answer_column
|
||||
AnkimakerConfig.question_column = question_column
|
||||
AnkimakerConfig.header = header
|
||||
AnkimakerConfig.AnkimakerConfig = AnkimakerConfig
|
||||
AnkimakerConfig.filters = list(map(lambda x: FilterConfig, filters))
|
||||
def __init__(
|
||||
self, separators=',', header=None, answer_column=None, question_column=None,
|
||||
filters=tuple(), *args, **karhs
|
||||
):
|
||||
self.answer_column = answer_column
|
||||
self.question_column = question_column
|
||||
self.header = header
|
||||
self.separators = separators
|
||||
self.filters = _conditionally_create_new_filters(filters)
|
||||
|
||||
@staticmethod
|
||||
def loader(configuration_content):
|
||||
@ -31,8 +34,19 @@ class AnkimakerConfig(yaml.YAMLObject):
|
||||
AnkimakerConfig.question_column = content.question_column
|
||||
AnkimakerConfig.answer_column = content.answer_column
|
||||
AnkimakerConfig.separators = content.separators
|
||||
AnkimakerConfig.filters = [
|
||||
[FilterConfig(**x) for x in or_filter]
|
||||
for or_filter in content.filters
|
||||
]
|
||||
AnkimakerConfig.filters = _conditionally_create_new_filters(content.filters)
|
||||
|
||||
|
||||
def _conditionally_create_new_filters(filters):
|
||||
conf_has_filters = len(filters) > 0
|
||||
if conf_has_filters:
|
||||
should_cast_filter = not isinstance(filters[0][0], FilterConfig)
|
||||
if should_cast_filter:
|
||||
new_filters = [
|
||||
[FilterConfig(**x) for x in or_filter]
|
||||
for or_filter in filters
|
||||
]
|
||||
else:
|
||||
new_filters = filters
|
||||
return new_filters
|
||||
return list()
|
||||
|
@ -1,7 +1,10 @@
|
||||
import yaml
|
||||
|
||||
from typing import List, Union
|
||||
|
||||
|
||||
class FilterConfig:
|
||||
class FilterConfig(yaml.YAMLObject):
|
||||
yaml_tag = '!fitlerconfig'
|
||||
column: Union[str, int]
|
||||
values: Union[List[Union[int, str]], Union[int, str]]
|
||||
|
||||
@ -10,7 +13,7 @@ class FilterConfig:
|
||||
self.values = values
|
||||
|
||||
def __str__(self):
|
||||
return f'<ankimaker.config.filters.FilterConfig {self.column}: {self.values} >'
|
||||
return f'<F({self.column}:{self.values})>'
|
||||
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
|
@ -3,11 +3,11 @@ import pandas as pd
|
||||
from typing import List
|
||||
from functools import reduce
|
||||
|
||||
from ankimaker.config import Config, FilterConfig
|
||||
from ankimaker import generator, config
|
||||
from ankimaker.config import Config, FilterConfig
|
||||
|
||||
|
||||
def load_csv(path):
|
||||
def load_csv(path: str) -> pd.DataFrame:
|
||||
df = pd.read_csv(path, header=Config.header, sep=Config.separators)
|
||||
df_columns_are_unnamed = all(map(lambda x: str(x).isnumeric(), df.columns))
|
||||
if df_columns_are_unnamed:
|
||||
@ -17,7 +17,7 @@ def load_csv(path):
|
||||
return df
|
||||
|
||||
|
||||
def add_df_to_deck(df: pd.DataFrame, deck: genanki.Deck):
|
||||
def add_df_to_deck(df: pd.DataFrame, deck: genanki.Deck) -> genanki.Deck:
|
||||
model = generator.create_model()
|
||||
|
||||
for entry in df.to_dict('records'):
|
||||
@ -29,7 +29,7 @@ def add_df_to_deck(df: pd.DataFrame, deck: genanki.Deck):
|
||||
return deck
|
||||
|
||||
|
||||
def handle_config(config_file_path):
|
||||
def handle_config(config_file_path: str):
|
||||
if config_file_path is None:
|
||||
Config.header = None
|
||||
Config.question_column = 0
|
||||
@ -40,9 +40,10 @@ def handle_config(config_file_path):
|
||||
|
||||
def apply_filters(df: pd.DataFrame) -> pd.DataFrame:
|
||||
"""
|
||||
|
||||
:param df:
|
||||
:return:
|
||||
Returns filtered dataframe removing any row that does not correspond to at least one
|
||||
of the filter groups defined in Configuration.
|
||||
:param df: Original dataframe.
|
||||
:return: Filtered Dataframe.
|
||||
"""
|
||||
there_are_no_filter_to_apply = len(Config.filters) == 0
|
||||
if there_are_no_filter_to_apply:
|
||||
@ -53,7 +54,12 @@ def apply_filters(df: pd.DataFrame) -> pd.DataFrame:
|
||||
|
||||
|
||||
def load_filter_from_config(df: pd.DataFrame) -> pd.Series:
|
||||
|
||||
"""
|
||||
Given a dataframe, returns a series indicating which rows should be kept according to loaded
|
||||
Config [AnkimakerConfig]. The rows presented in any filter group should be kept.
|
||||
:param df: Original dataframe.
|
||||
:return pd.Series: Boolean Series to filter df.
|
||||
"""
|
||||
group_filters: List[pd.Series] = list()
|
||||
for group in Config.filters:
|
||||
if len(group) > 0:
|
||||
@ -66,22 +72,23 @@ def load_filter_from_config(df: pd.DataFrame) -> pd.Series:
|
||||
|
||||
def create_group_filter(df: pd.DataFrame, group: List[FilterConfig]) -> pd.Series:
|
||||
"""
|
||||
|
||||
:param df:
|
||||
:param group:
|
||||
:return:
|
||||
Creates a boolean series indicating which rows are in the filters configuration defined
|
||||
group to be used to filter the dataframe.
|
||||
:param df: Input dataframe to be filtered.
|
||||
:param group: Filter defined Group.
|
||||
:return: Series of boolean indicating rows that are in the group.
|
||||
"""
|
||||
rule: FilterConfig
|
||||
query: List[pd.Series] = list()
|
||||
for rule in group:
|
||||
assert_rule_is_valid(df, rule)
|
||||
__assert_rule_is_valid(df, rule)
|
||||
is_in_rule = df[rule.column].apply(lambda x: x in rule.values)
|
||||
query.append(is_in_rule)
|
||||
is_in_group = reduce(lambda a, b: a & b, query)
|
||||
return is_in_group
|
||||
|
||||
|
||||
def assert_rule_is_valid(df: pd.DataFrame, rule: FilterConfig):
|
||||
def __assert_rule_is_valid(df: pd.DataFrame, rule: FilterConfig):
|
||||
assert rule.column in df.columns
|
||||
|
||||
|
||||
|
@ -1,10 +1,12 @@
|
||||
import os
|
||||
|
||||
import yaml
|
||||
import click
|
||||
import pandas as pd
|
||||
from typing import Type
|
||||
from typing import Type, List
|
||||
from bullet import Bullet, Input, YesNo
|
||||
|
||||
from ankimaker.config import Config
|
||||
from ankimaker.config import Config, FilterConfig
|
||||
|
||||
|
||||
__CONFIRMATION_QUESTION = """
|
||||
@ -25,25 +27,93 @@ __COMMAND_SAMPLE = """ankimaker csv \
|
||||
"""
|
||||
|
||||
|
||||
__ADD_FILTER_QUESTION = """Do you want do add a filter to the configuration?"""
|
||||
|
||||
|
||||
def create_config(input_file, output_path):
|
||||
new_config = Config()
|
||||
|
||||
new_config.separators = handle_read_option(
|
||||
input_file, read_option='sep', sep=new_config.separators
|
||||
separators = handle_read_option(
|
||||
input_file, read_option='sep', sep=','
|
||||
)
|
||||
new_config.header = handle_read_option(
|
||||
input_file, read_option='header', header=new_config.header,
|
||||
sep=new_config.separators, option_type=int
|
||||
header = handle_read_option(
|
||||
input_file, read_option='header', header=None,
|
||||
sep=separators, option_type=int
|
||||
)
|
||||
|
||||
new_config.question_column = get_column('question')
|
||||
new_config.answer_column = get_column('answer')
|
||||
question_column = get_column('question')
|
||||
answer_column = get_column('answer')
|
||||
|
||||
filters = process_filters(input_file, header, separators)
|
||||
|
||||
new_config = Config(
|
||||
separators=separators,
|
||||
header=header,
|
||||
question_column=question_column,
|
||||
answer_column=answer_column,
|
||||
filters=filters
|
||||
)
|
||||
save_file(new_config, output_path)
|
||||
|
||||
finish_message = __SUCCESS_MESSAGE.format(command=make_sample_command(input_file, output_path))
|
||||
click.clear()
|
||||
click.echo(finish_message)
|
||||
|
||||
|
||||
def process_filters(input_file, header, separators):
|
||||
df = pd.read_csv(input_file, header=header, sep=separators)
|
||||
filters = add_filters_to_config(df)
|
||||
return filters
|
||||
|
||||
|
||||
def __inline_yes_or_no_question(question):
|
||||
answer = YesNo(prompt=question, default='n').launch()
|
||||
return answer
|
||||
|
||||
|
||||
def add_filters_to_config(df: pd.DataFrame) -> List[List[FilterConfig]]:
|
||||
config = Config()
|
||||
should_add_filter = __inline_yes_or_no_question(__ADD_FILTER_QUESTION)
|
||||
while should_add_filter:
|
||||
config = add_filter_to_or_create_filter_group(df, config)
|
||||
should_add_filter = __inline_yes_or_no_question(__ADD_FILTER_QUESTION)
|
||||
return config.filters
|
||||
|
||||
|
||||
def add_filter_to_or_create_filter_group(df: pd.DataFrame, config: Config) -> Config:
|
||||
config_has_filters = len(config.filters) > 0
|
||||
chosen_group = -1
|
||||
if config_has_filters:
|
||||
filter_options = [f'({"|".join(map(str, group)):.45s})' for group in config.filters]
|
||||
filter_options = [f'Group{i+1}{s}' for i, s in enumerate(filter_options)]
|
||||
cli = Bullet(
|
||||
prompt="Select group: ",
|
||||
choices=["Create new", *filter_options],
|
||||
return_index=True,
|
||||
)
|
||||
chosen_group = cli.launch()[1] - 1
|
||||
new_filter = create_filter_config(df)
|
||||
if chosen_group < 0:
|
||||
config.filters.append([new_filter])
|
||||
else:
|
||||
config.filters[chosen_group].append(new_filter)
|
||||
return config
|
||||
|
||||
|
||||
def create_filter_config(df: pd.DataFrame) -> FilterConfig:
|
||||
options = list(df.columns)
|
||||
cli = Bullet(
|
||||
prompt="Select a columns to filter: ",
|
||||
choices=list(map(str, options)),
|
||||
return_index=True
|
||||
)
|
||||
chosen = cli.launch()[1]
|
||||
filter_column = options[chosen]
|
||||
columns_values = df[filter_column].unique()
|
||||
values = Input(f'Which values fo filter out? values[{columns_values}]: ').launch()
|
||||
new_filter = FilterConfig(column=filter_column, values=values)
|
||||
return new_filter
|
||||
|
||||
|
||||
def get_column(name: str) -> str:
|
||||
answer = click.prompt(f'Which is your {name} column?', type=str, confirmation_prompt=True)
|
||||
return answer
|
||||
|
@ -1,3 +1,3 @@
|
||||
def get_fyle_type(filename):
|
||||
def get_fyle_type(filename: str) -> str:
|
||||
filetype = filename.split('.')[-1] if len(filename.split('.')) > 0 else None
|
||||
return filetype
|
||||
|
Loading…
x
Reference in New Issue
Block a user