Compare commits

..

2 Commits

Author SHA1 Message Date
gabriel becker
d46f59abc0 Add filter creation in configuration creation command. 2022-12-09 17:28:50 +11:00
gabriel becker
eaa82edc81 Create filters in configuration and implement it. 2022-12-09 12:56:02 +11:00
11 changed files with 149 additions and 50 deletions

5
.gitignore vendored
View File

@ -157,4 +157,7 @@ cython_debug/
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
.idea/
# Project Specific
scripts/

View File

@ -1,4 +1,5 @@
click
genanki
pandas
pyyaml
pyyaml
bullet

View File

@ -27,6 +27,7 @@ setup(
"genanki",
"pandas",
"pyyaml",
"bullet"
],
long_description_content_type='text/markdown',
)

View File

@ -1,10 +1,3 @@
import click
@click.group("cli")
def cli():
pass
from ..commands.from_csv import generate_anki
from ..commands.make_config import make_csv_config
from .base_click import cli
from .from_csv import generate_anki
from .make_config import make_csv_config

View File

@ -0,0 +1,6 @@
import click
@click.group("cli")
def cli():
pass

View File

@ -1,5 +1,6 @@
import click
import re
import click
from ankimaker.commands import cli
from ankimaker.tasks import basic_pandas_to_anki

View File

@ -14,12 +14,15 @@ class AnkimakerConfig(yaml.YAMLObject):
separators = ','
filters: List[List[FilterConfig]] = list()
def __init__(self, header=None, answer_column=None, question_column=None, filters=tuple()):
AnkimakerConfig.answer_column = answer_column
AnkimakerConfig.question_column = question_column
AnkimakerConfig.header = header
AnkimakerConfig.AnkimakerConfig = AnkimakerConfig
AnkimakerConfig.filters = list(map(lambda x: FilterConfig, filters))
def __init__(
self, separators=',', header=None, answer_column=None, question_column=None,
filters=tuple(), *args, **karhs
):
self.answer_column = answer_column
self.question_column = question_column
self.header = header
self.separators = separators
self.filters = _conditionally_create_new_filters(filters)
@staticmethod
def loader(configuration_content):
@ -31,8 +34,19 @@ class AnkimakerConfig(yaml.YAMLObject):
AnkimakerConfig.question_column = content.question_column
AnkimakerConfig.answer_column = content.answer_column
AnkimakerConfig.separators = content.separators
AnkimakerConfig.filters = [
[FilterConfig(**x) for x in or_filter]
for or_filter in content.filters
]
AnkimakerConfig.filters = _conditionally_create_new_filters(content.filters)
def _conditionally_create_new_filters(filters):
conf_has_filters = len(filters) > 0
if conf_has_filters:
should_cast_filter = not isinstance(filters[0][0], FilterConfig)
if should_cast_filter:
new_filters = [
[FilterConfig(**x) for x in or_filter]
for or_filter in filters
]
else:
new_filters = filters
return new_filters
return list()

View File

@ -1,7 +1,10 @@
import yaml
from typing import List, Union
class FilterConfig:
class FilterConfig(yaml.YAMLObject):
yaml_tag = '!fitlerconfig'
column: Union[str, int]
values: Union[List[Union[int, str]], Union[int, str]]
@ -10,7 +13,7 @@ class FilterConfig:
self.values = values
def __str__(self):
return f'<ankimaker.config.filters.FilterConfig {self.column}: {self.values} >'
return f'<F({self.column}:{self.values})>'
def __repr__(self):
return self.__str__()

View File

@ -3,11 +3,11 @@ import pandas as pd
from typing import List
from functools import reduce
from ankimaker.config import Config, FilterConfig
from ankimaker import generator, config
from ankimaker.config import Config, FilterConfig
def load_csv(path):
def load_csv(path: str) -> pd.DataFrame:
df = pd.read_csv(path, header=Config.header, sep=Config.separators)
df_columns_are_unnamed = all(map(lambda x: str(x).isnumeric(), df.columns))
if df_columns_are_unnamed:
@ -17,7 +17,7 @@ def load_csv(path):
return df
def add_df_to_deck(df: pd.DataFrame, deck: genanki.Deck):
def add_df_to_deck(df: pd.DataFrame, deck: genanki.Deck) -> genanki.Deck:
model = generator.create_model()
for entry in df.to_dict('records'):
@ -29,7 +29,7 @@ def add_df_to_deck(df: pd.DataFrame, deck: genanki.Deck):
return deck
def handle_config(config_file_path):
def handle_config(config_file_path: str):
if config_file_path is None:
Config.header = None
Config.question_column = 0
@ -40,9 +40,10 @@ def handle_config(config_file_path):
def apply_filters(df: pd.DataFrame) -> pd.DataFrame:
"""
:param df:
:return:
Returns filtered dataframe removing any row that does not correspond to at least one
of the filter groups defined in Configuration.
:param df: Original dataframe.
:return: Filtered Dataframe.
"""
there_are_no_filter_to_apply = len(Config.filters) == 0
if there_are_no_filter_to_apply:
@ -53,7 +54,12 @@ def apply_filters(df: pd.DataFrame) -> pd.DataFrame:
def load_filter_from_config(df: pd.DataFrame) -> pd.Series:
"""
Given a dataframe, returns a series indicating which rows should be kept according to loaded
Config [AnkimakerConfig]. The rows presented in any filter group should be kept.
:param df: Original dataframe.
:return pd.Series: Boolean Series to filter df.
"""
group_filters: List[pd.Series] = list()
for group in Config.filters:
if len(group) > 0:
@ -66,22 +72,23 @@ def load_filter_from_config(df: pd.DataFrame) -> pd.Series:
def create_group_filter(df: pd.DataFrame, group: List[FilterConfig]) -> pd.Series:
"""
:param df:
:param group:
:return:
Creates a boolean series indicating which rows are in the filters configuration defined
group to be used to filter the dataframe.
:param df: Input dataframe to be filtered.
:param group: Filter defined Group.
:return: Series of boolean indicating rows that are in the group.
"""
rule: FilterConfig
query: List[pd.Series] = list()
for rule in group:
assert_rule_is_valid(df, rule)
__assert_rule_is_valid(df, rule)
is_in_rule = df[rule.column].apply(lambda x: x in rule.values)
query.append(is_in_rule)
is_in_group = reduce(lambda a, b: a & b, query)
return is_in_group
def assert_rule_is_valid(df: pd.DataFrame, rule: FilterConfig):
def __assert_rule_is_valid(df: pd.DataFrame, rule: FilterConfig):
assert rule.column in df.columns

View File

@ -1,10 +1,12 @@
import os
import yaml
import click
import pandas as pd
from typing import Type
from typing import Type, List
from bullet import Bullet, Input, YesNo
from ankimaker.config import Config
from ankimaker.config import Config, FilterConfig
__CONFIRMATION_QUESTION = """
@ -25,25 +27,93 @@ __COMMAND_SAMPLE = """ankimaker csv \
"""
__ADD_FILTER_QUESTION = """Do you want do add a filter to the configuration?"""
def create_config(input_file, output_path):
new_config = Config()
new_config.separators = handle_read_option(
input_file, read_option='sep', sep=new_config.separators
separators = handle_read_option(
input_file, read_option='sep', sep=','
)
new_config.header = handle_read_option(
input_file, read_option='header', header=new_config.header,
sep=new_config.separators, option_type=int
header = handle_read_option(
input_file, read_option='header', header=None,
sep=separators, option_type=int
)
new_config.question_column = get_column('question')
new_config.answer_column = get_column('answer')
question_column = get_column('question')
answer_column = get_column('answer')
filters = process_filters(input_file, header, separators)
new_config = Config(
separators=separators,
header=header,
question_column=question_column,
answer_column=answer_column,
filters=filters
)
save_file(new_config, output_path)
finish_message = __SUCCESS_MESSAGE.format(command=make_sample_command(input_file, output_path))
click.clear()
click.echo(finish_message)
def process_filters(input_file, header, separators):
df = pd.read_csv(input_file, header=header, sep=separators)
filters = add_filters_to_config(df)
return filters
def __inline_yes_or_no_question(question):
answer = YesNo(prompt=question, default='n').launch()
return answer
def add_filters_to_config(df: pd.DataFrame) -> List[List[FilterConfig]]:
config = Config()
should_add_filter = __inline_yes_or_no_question(__ADD_FILTER_QUESTION)
while should_add_filter:
config = add_filter_to_or_create_filter_group(df, config)
should_add_filter = __inline_yes_or_no_question(__ADD_FILTER_QUESTION)
return config.filters
def add_filter_to_or_create_filter_group(df: pd.DataFrame, config: Config) -> Config:
config_has_filters = len(config.filters) > 0
chosen_group = -1
if config_has_filters:
filter_options = [f'({"|".join(map(str, group)):.45s})' for group in config.filters]
filter_options = [f'Group{i+1}{s}' for i, s in enumerate(filter_options)]
cli = Bullet(
prompt="Select group: ",
choices=["Create new", *filter_options],
return_index=True,
)
chosen_group = cli.launch()[1] - 1
new_filter = create_filter_config(df)
if chosen_group < 0:
config.filters.append([new_filter])
else:
config.filters[chosen_group].append(new_filter)
return config
def create_filter_config(df: pd.DataFrame) -> FilterConfig:
options = list(df.columns)
cli = Bullet(
prompt="Select a columns to filter: ",
choices=list(map(str, options)),
return_index=True
)
chosen = cli.launch()[1]
filter_column = options[chosen]
columns_values = df[filter_column].unique()
values = Input(f'Which values fo filter out? values[{columns_values}]: ').launch()
new_filter = FilterConfig(column=filter_column, values=values)
return new_filter
def get_column(name: str) -> str:
answer = click.prompt(f'Which is your {name} column?', type=str, confirmation_prompt=True)
return answer

View File

@ -1,3 +1,3 @@
def get_fyle_type(filename):
def get_fyle_type(filename: str) -> str:
filetype = filename.split('.')[-1] if len(filename.split('.')) > 0 else None
return filetype